

in the ENI Southern Neighbourhood region

Strengthen the water utilities capacities to manage / reduce NRW and detect leakage: Activity No.: N-W-EG-1

Task 5. NRW Training

13-15 February 2023, Asyut, Egypt

Outlines of the Training Session

- 1. Customer and GIS DBs combined analysis
- 2. General Concepts on Network Analysis
- 3. Use of Epanet 2.00.12
- 4. Model Construction
- 5. Field Work and Model Calibration
- 6. Documentation

in the ENI Southern Neighbourhood region

1. Customer and GIS DBs combined analysis

Data Sources

Household Database

Customer Database

Household Survey Data

Geographical DB – WSS data

Geographical DB: Area data

			-
DMA17	DMA10		
ΓΜΔ2			No. Date Revision
DWAZ			
		DMA1	Approved by:
			Beneficiary: Asyut Water and Wastewater Company Client: Project funded by the European Union
			Consultant: LDK Consultants Global EEIG CONVERTANTS Project Title: Strengthen the water utilities conserties to
			manage/reduce NRW and detect leakage Date Scale Rev.
			1.10.000

Geographical DB: Household Survey

CONSULTANTS

Combined Geo and Alphanumeric Data

Assign customer/household a pipe ID

Assign customer/household a node ID

in the ENI Southern Neighbourhood region

TEA-BREAK

in the ENI Southern Neighbourhood region

2. Network Analysis

General Concepts on Network Analysis

- understanding the behaviour of supply and distribution systems;
- identifying and resolving system anomalies (e.g. closed valves);
- 3. assessing the levels of service;
- 4. assessment of the carrying capacity of the existing system;
- design of reinforcements to the system to meet future demand;

General Concepts on Network Analysis

- 6. assessment of new resource options;
- 7. design of distribution new systems;
- assessment of the effect of 8. rehabilitation techniques;
- 9. design of leakage control schemes (district mete ring and pressure control);
- 10. as part of the process in reducing pumping costs;

General Concepts on Network Analysis

- 11. assessing the value and design of distribution monitoring schemes;
- 12. contingency planning: answering "what if?" questions;
- Daily operational use: such as rerouting around bursts or maintenance work;
- 14. identifying causes and solutions to supply problems ;
- 15. assessing the financial contribution required for supplies to new developments;

in the ENI Southern Neighbourhood region

General Concepts on Network Analysis

- 16. water quality investigation requiring the study of flow paths;
- 17. source utilisation studies.

3. Use of Epanet 2.00.12

in the ENI Southern Neighbourhood region

General Concepts on the use of EPANET 2.00.12

This Project is funded by the European Union

General Concepts on the use of EPANET 2.00.12

	EG-Asyut_10.inp			
[TITLE]				
EG-Asyut_10				
[JUNCTIONS]				
;ID	Elev	Demand	Pattern	
N10	54.41	0		;
N20	58	0		;
N30	54.2	0		;
N40	61.8	0		;
N60	58.1	0.1366		;
N70	56	0		;
N80	56.34	0		;
N90	56.2	0		;
N100	60.4	0.1175		;
N110	56.9	0		;
N120	58.4	0.1458		;
N130	61.3	0.1175		;
N140	56	0.1458		;
N150	59.9	0.1458		;
N160	62.8	0.1175		;
N170	62.8	0.1175		;
N180	59.2	0		;
N190	55.7	0.1458		;
N200	55.9	0.1458		;
N210	55.9	0.1458		;
N220	59.61	0.1458		;
N230	59.6	0.1458		;
N240	57.1	0.1458		;
N250	57.12	0.1458		;
N260	55.8	0.1175		;
N270	56.89	0		;
N280	56.9	0		;
N290	59.6	0		;
N300	59.6	0		;
N310	58.8	0.1079		;
N320	58.8	0.1079		
N330	62.36	0.11/5		
N340	58.37	0.1458		;
N350	58.4	0.1458		
N360	55.5/	0.11/5		:

		EG-Asyut_10.rpt				
Page 1		24/09/2022 18:38:44				
*****	*	*	**	***	***	
*		EPANE	т		*	
*	Hvo	raulic and Wate	r Ouality		*	
*	Ana	lysis for Pipe	Networks		*	
*		Version 2.0			*	
****	***	***	****		***	
Input Fil	le: EG-Asyut_10.r	net				
EG-Asyut_	_10					
Link – No	ode Table:					
Link	Start	End	Length	Diameter		
ID	Node	Node	m	mm		
P10	N160	N170	0.25554	100		
P20	N200	N210	0.27785	200		
P30	N220	N230	0.27514	200		
P40	N240	N250	0.35735	150		
P50	N270	N280	0.3956	400		
P60	N290	N300	0.4134	400		
P70	N310	N320	0.43829	300		
P80	N340	N350	0.51924	100		
P90	N360	N370	0.51547	150		
P130	N440	N450	0.61033	200		
P140	N460	N470	0.61401	300		
P150	N480	N490	0.63349	200		
P160	N500	N510	0.65147	100		
P170	N520	N530	3,52261	150		
P180	N190	N540	0.76323	300		
P190	N550	N560	0.82856	100		
P200	N570	N580	0.85008	200		
P210	N590	N600	0.88324	100		
P220	N610	N620	0.91526	150		
P230	N630	N640	0.91320	300		
P250	N670	N680	0.91303	150		
P260	NGOO	N700	0.97100	100		
P270	N090	N700	0.96480	200		
2/0	11/10	14/20	1.00239	300		

in the ENI Southern Neighbourhood region

4. Model Construction

General Concepts on how to approach a WSS network Model - Model construction

Before starting to build a network model there must be clear statement of the aims and objectives of the task.

The model of the network may be required for new design, leakage control, pump scheduling, source optimisation, rehabilitation planning, general operational use or all of these.

These objectives will determine:

- 1. the type of model, e.g. single point in time or simulation model,
- 2. the level of detail necessary,
- 3. the amount of resources and timescale of the project.

General Concepts on how to approach a WSS network Model - Model construction

Sufficient data will need to be collected from various sources to build the model. This information will probably be in a number of formats and it is essential that an assessment or a clear indication is made of the extent and quality of the existing system's records.

Any additional local knowledge that is available from inspectors, distribution engineers, etc. needs to be considered and recorded if necessary.

The system records may include:

- 1. distribution network records drawings;
- 2. source and reservoir details layouts and pipework, pump curves, valving, etc.;
- 3. existing flow meters, telemetry, system monitoring;
- 4. leakage zone meters;

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

- 5. metered consumption and billing records;
- 6. age and condition of mains, where known, mains laying records, burst main report forms;
- 7. pump details;
- 8. demand forecasts;
- 9. general system operation (including local knowledge).

It is important that an accurate and thorough check is made of the system records to ascertain and have corrected obvious anomalies, errors, omissions, prior to commencing model building. It is also important that site visits are made to check on the accuracy and completeness of as-built drawings.

Water and **Environment Support** in the ENI Southern Neighbourhood region

General Concepts on how to approach a WSS network Model - Model construction

Pipes to be included in the model are derived from an inspection of available mains records. Guidelines for pipes to include for various types of models are given in the table. This is a task where experience is essential and this table should not be considered as a standard ruling.

MODEL USE	PIPES TO BE MODELLED
Strategic model to be used for source management and pump scheduling	Primary/strategic trunk supply system connecting sources to be scheduled with centres of demand – generally ≥200mm diameter
Detailed operational use, designing a leakage or pressure control scheme, rehabilitation planning, system reinforcement planning.	All pipes ≥150mm diameter and some important 100mm and 80mm pipes may have to be included where they are significant carriers.

Pipe selection

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

The diameter of the mains to be included in the model are normally taken from the network drawings. However, care must be taken when relating these values to internal dimensions.

The wall thickness of some materials varies as does the way materials are recorded e.g. the outside dimension of MDPE and steel are normally recorded and the internal not dimension. In such cases actual internal dimension should he used.

in the ENI Southern Neighbourhood region

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

DI PIPE								
DN	OUTSIDE DN (mm)	WALL THICKNESS (mm) K9	WALL THICKNESS (mm) K10	Din (mm) K9	Din (mm) K10			
40	56	6	6	50,00	50,00			
50	66	6	6	60,00	60,00			
60	77	6	6	71,00	71,00			
65	82	6	6	76,00	76,00			
80	98	6	6	92,00	92,00			
100	118	6	6	112,00	112,00			
125	144	6	6	138,00	138,00			
150	170	6	6,5	164,00	163,50			
200	222	6,3	7	215,70	215,00			
250	274	6,8	7,5	267,20	266,50			
300	326	7,2	8	318,80	318,00			
350	378	7,7	8,5	370,30	369,50			
400	429	8,1	9	420,90	420,00			
450	480	8,6	9,5	471,40	470,50			
500	532	9	10	523,00	522,00			
600	635	9,9	11,1	625,10	623,90			
700	738	10,9	12	727,10	726,00			
800	842	11,7	13	830,30	829,00			
900	945	12,9	14,1	932,10	930,90			
1000	1048	13,5	15	1034,50	1033,00			
1100	1152	14,4	16	1137,60	1136,00			
1200	1255	15,3	17	1239,70	1238,00			
1400	1462	17,1	19	1444,90	1443,00			
1500	1565	18	20	1547,00	1545,00			
1600	1668	18,9	21	1649,10	1647,00			
1800	1875	20,7	23	1854,30	1852,00			
2000	2082	22,5	25	2059,50	2057,00			

	HDPE PIPE							
OUTSIDE DN (mm)		IN	INSIDE DN (mm)					
	PN 2,5	PN 4	PN 6	PN 10	PN 16			
110	104,6	101,60	97,4	90	79,8			
125	118,8	115,40	110,8	102,2	90,8			
140	133	129,20	124	114,6	101,6			
160	152	147,60	141,8	130,8	116,2			
180	171,2	166,20	159,6	147,2	130,8			
200	190,2	184,60	177,2	163,6	145,4			
225	214	207,80	199,2	184	163,4			
250	237,6	230,70	221,6	204,6	181,6			
280	266,2	258,60	248,2	229,2	201,4			
315	299,6	290,80	279,2	257,8	229,0			
355	337,6	327,80	314,8	290,6	258,0			
400	380,4	369,40	354,6	327,4	290,6			
450	428	415,60	399	368,2	327,0			
500	475,4	461,80	443,4	409,2				
560	532,6	517,20	496,6	458,4				
630	599,2	581,80	558,6	515,6				
710	675,2	655,60	629,6					
800	760,8	738,80	709,4					
900	856	831,20	798					
1000	951	923,60	887					
1200	1141,2	1108,20						
1400	1331,4	1293,00						
1600	1521,6	1477,60						

ID =DN + (OD - DN) +2*WALL THICKNESS/2

This Project is funded by the European Union

General Concepts on how to approach a WSS network Model - Model construction

DESIGN COEFFICIENT TABLES

Manning's Equation Roughness Coefficient (n)								
Pipe Material	ID	Rai	nge	Typical design Value				
POLYETHYLENE	HDPE	0,008	0,011	0,009				
CAST IRON	CI	0,012	0,015	0,013				
DUCTILE IRON	DI	0,012	0,015	0,013				
CORRUGATED STEEL	CS	0,021	0,030	0,024				
CONCRETE	с	0,012	0,016	0,015				
VITRIFIED CLAY	VC	0,011	0,017	0,013				
SPIRAL RIB METAL	SRM	0,012	0,013	0,013				
CORRUGATED METAL (ANNULAR)	CMA	0,022	0,027	0,024				
CORRUGATED METAL (HELIC AL)	СМН	0,011	0,023	0,020				

Hazen-Williams Friction Factor (c)								
Pipe Material	ID	Range		Range		Average Value	Typical design Value	
POLYETHYLENE	HDPE	160	150	155	150			
PVC	PVC	160	150	155	150			
CEMENT	CM	160	130	148	140			
STEEL	ST	160	130	148	140			
WELDED STEEL	WS	150	80	130	100			
SEAMLESS STEEL	SS	150	80	130	100			
CAST IRON	CI	150	80	130	100			
DUCTILE IRON	DI	150	80	130	100			
CONCRETE	С	152	85	120	100			
CORRUGATED STEEL	cs			60	60			

Water and Environment Support in the ENI Southern Neighbourhood region

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

Node points are required to identify pipe junctions, locations of change of pipe characteristics, connections to system features (such as reservoirs, pumps and valves), centres of demand and field measurement points.

The number of nodes at which <u>field measurements of pressure</u> are made to calibrate the model should be at least <u>15% of the number of nodes</u> in the network model. For models in excess of 500 nodes, while 15% is the desirable minimum coverage this may be progressively reduced down to a minimum of <u>10% for models of 1000 nodes or more</u>. These measurements should be taken at points spread throughout the system but concentrated at key pipe junctions but should be discussed with local staff to ensure current/potential problem areas are also monitored. This pressure monitoring is in addition to field measurements of flow and pressure at all source and abstraction points to the system.

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

The elevation (AOD) of nodes to be used for field pressure measurement should be determined by a field levelling exercise (to within an accuracy of ±25mm).

However the elevation (AOD) recorded for all nodes within the model should normally be taken as the level of the road adjacent to the property with the highest elevation (AOD) within the nodal area. This value should be interpolated from existing map(s) to an accuracy of ±0.5m.

General Concepts on how to approach a WSS network Model - <u>Model construction</u>

The consumption of water in a network is often referred to as demand. The allocation of demand is the largest unknown parameter in network analysis and so must be considered with great thought. The method is often site specific.

For each node point with a demand i.e. demand node, the total demand can normally be split into three basic types:

- metered demand, in turn divided into:
 - Domestic
 - Non-domestic (commercial, school, hospital, etc).
 - industrial;
- Leakage
- Special customers (large consumers).

Obviously the use to which the model is put will determine the actual type of demand allocation.

Water and Environment Support in the ENI Southern Neighbourhood region

General Concepts on how to approach a WSS network Model - Model construction

Non-Domestic Demand

NRW Demand

5. Field Work and Calibration

The network model must be compared with the real system it represents to demonstrate that it behaves similarly. Consequently a variety of field measurements and calibrations of the elements and of the entire system need to be made. The most important (field) measurements are a record of simultaneous flow and pressure measurements within the network at selected nodes.

This activity is commonly known as the "field test".

The field test may also need to be supplemented with simultaneous measurements of very large consumer meters, detailed monitoring of control valve performance and actual pump characteristics.

It is important that before commencing the field test exercise, checks are carried out to ensure as far as possible that the system is operating as believed or as represented by the model.

The various field test measurements which are essential for network analysis are listed below:

- a) Carry out simultaneous measurements of all inflows and outflows, and flows on selected mains within the network.
- b) Carry out simultaneous pressure measurements at selected nodes.
- c) Monitor reservoir levels.
- d) Log major metered users consumption.
- e) Pump tests head/flow behaviour curves.

it is essential that appropriate equipment is used capable of providing the necessary information to the required accuracy. Such equipment should be properly maintained and calibrated at regular intervals in accordance with manufacturers' recommendations or on a regular basis (e.g. at least annually).

The table gives an indication of the type and amount of equipment that would be needed to carry out a synchronised field test of the whole area. Actual numbers of equipment will depend upon the size of the model and the complexity of the system.

MODEL TYPE	MAJOR EQUIPMENT ITEMS				
MODELTITE	PRESSURE	FLOW RECORDERS	LEVEL TRANSDUCERS		
Simple e.g. town of less than 30,000 population	20-40	26	2-4		
Town of about 300,000 population, several pressure zones detail sufficient to design a leakage control scheme	4080	5-15	4-8		
Division or Company strategic model of about 1 million population	60-120	15-30	10-20		

Field test equipment requirements

The field test should normally be carried out for a minimum of a 48 hour continuous period. This time period should give a sufficient number of different flow patterns to calibrate the model. However in some cases it may be advantageous to monitor the system for a longer period of time. During the field test simultaneous measurements e.g. pressure and flow measurements, at all agreed equipment installation points, should be taken. All field measurements should be related to a common time-base.

Flow and pressure readings and service reservoir levels should be taken and stored a minimum of every 5 minutes during the field test period. All data loggers shall be synchronised to within ± 15 seconds of each other and to within ± 15 seconds of Greenwich mean time.

General Concepts on how to approach a WSS network Model - Calibration

A network model can only be useful as a tool if the Water Utility knows that its behaviour is representative of the real system. This is particularly true when attempting to convince operational staff of the necessity to take action based on a model prediction.

Consequently, the flows and pressures that the model predicts must be compared with the measured inflows and outflows and measured pressures from the field test. If good agreement between the predicted results and field data cannot be obtained, then the model is not a true representation of the part of the real system where serious discrepancies remain.

Models can be calibrated at one or more snapshot conditions. For improved results, calibration can be for a 24 hour simulation period.

General Concepts on how to approach a WSS network Model - Calibration

The following guidelines represent the acceptable performance criteria against which modelled flows and pressures should agree with recorded field data.

Flows

- 1) Modelled trunk main flows (where the flow is more than 10% of the total demand) ±5% of measured flows
- 2) Modelled trunk main flows (where flow is less than 10% of total demand) ±10% of measured flows

Pressures

- **1.** 85% of field test measurements ±0.5m or ±5% of maximum head-loss across system whichever is greater.
- 2. 95% of field test measurements ±0.75m or ±7.5% of maximum headloss across system whichever is greater.
- **3.** 100% of field test measurements ±2m or ±15% of maximum head-loss across system whichever is greater.

in the ENI Southern Neighbourhood region

6. Documentation

General Concepts on how to approach a WSS network Model – Documentation

It should be stressed that models are built not just to solve an immediate problem. They will probably be used at some time in the future, possibly years later, by someone not conversant with the model building.

Consequently it is essential that detailed, legible and comprehensive records are kept. These records will be continually referred to during the model calibration period and time used in organising them will be well spent.

When the network model has been completed sufficient documentation should be produced such that the network model can be properly used, maintained and updated.

General Concepts on how to approach a WSS network Model – Documentation

A typical network analysis report will consist of the following:

MAIN REPORT

- 1. summary;
- 2. objective of study;
- 3. description of study area;
- 4. description of method normally only additions or amendments to accepted techniques;
- description of each model produced typically including observations, evaluation of field data, anomalies resolved and unresolved, peculiarities of the system, any non-standard modelling undertaken (e.g. pumping station modelled as a reservoir);
- 6. results of predictive work;
- 7. conclusions and recommendations;
- 8. references to sources of information.

General Concepts on how to approach a WSS network Model – Documentation

APPENDICES (BOUND WITH MAIN REPORT)

- list of input data;
- measured pump characteristic curve calibration;
- pressure point levels;
- calibration computer run, flow and pressure comparisons.

APPENDICES (BOUND SEPARATELY)

- surveying/levelling book (unless carried out by a separate contractor);
- flow and pressure from field measurements.

Water and Environment Support in the ENI Southern Neighbourhood region

General Concepts on how to approach a WSS network Model – Documentation

DRAWINGS

- base map geographic showing study area (often 1:10000 or 1:50000);
- base maps or scaled overlays showing included pipework with diameters and node numbers, and nodal areas. Larger scale maps where necessary to show nodal areas;
- schematic diagram, approximately to scale, showing additional nodal and pipe data;
- A4 size location plans (scale 1:1250 or 1:2500 plan) of all tapping points and hydrants.

in the ENI Southern Neighbourhood region

Questions & Answers

